(半导体制造专业供应商)
办公地址:
一:北京市 平谷区 兴谷开发区平翔路9号
二:北京市 海淀区 西三旗育新花园5号楼
电话:010-80984370
传真:010-69958029
手机:18601279164
联系人:于先生 ,王先生
QQ: 1262858591
微信:W1262858591(欢迎加微信咨询)
2010-2015年中国IC(半导体)行业形势 |
2010-2015年中国IC(半导体)行业形势
在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝及其合金等称为第二代半导体材料;而将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化锌和金刚石等称为第三代半导体材料。上述材料是目前主要应用的半导体材料, 三代半导体材料代表品种分别为硅、砷化镓和氮化镓。表中禁带宽度决定发射光的波长,禁带宽度越大发射光波长越短(蓝光发射);禁带宽度越小发射光波长越长。其它参数数值越高, 半导体性能越好。电子迁移速率决定半导体低压条件下的高频工作性能,饱和速率决定半导 体高压条件下的高频工作性能。 硅材料具有储量丰富、价格低廉、热性能与机械性能优良、易于生长大尺寸高纯度晶体等优点,处在成熟的发展阶段。 目前,硅材料仍是电子信息产业最主要的基础材料,95%以上的半导体器件和99%以上的集成电路(IC)是用硅材料制作的。在21世纪,它的主导和核心地位仍不会动摇。但是硅材料的物理性质限制了其在光电子和高频高功率器件上的应用。 砷化镓材料的电子迁移率是硅的6倍多,其器件具有硅器件所不具有的高频、高速和光电性能,并可在同一芯片同时处理光电信号,被公认是新一代的通信用材料。随着高速信息产业的蓬勃发展,砷化镓成为继硅之后发展最快、应用最广、产量最大的半导体材料。同时,其在军事电子系统中的应用日益广泛,并占据不可取代的重要地位。 选择宽带隙半导体材料的主要理由是显而易见的。氮化镓的热导率明显高于常规半导体。 这一属性在高功率放大器和激光器中是很起作用的。带隙大小本身是热生率的主要贡献者。在任意给定的温度下,宽带隙材料的热生率比常规半导体的小10~14个数量级。这一特性在电荷耦合器件、新型非易失性高速存储器中起很大的作用,并能实质性地减小光探测器的暗电流。宽带隙半导体材料的高介电强度最适合用于高功率放大器、开关和二极管。 宽带隙材料的相对介电常数比常规材料的要小,由于对寄生参数影响小,这对毫米波放大器而言是有利用价值的。电荷载流子输运特性是许多器件尤其是工作频率为微波、毫米波放大器的一个重要特性。宽带隙半导体材料的电子迁移率一般没有多数通用半导体的高,其空穴迁移率一般较高,金刚石则很高。宽带隙材料的高电场电子速度(饱和速度)一般较常规半导体高得多,这就使得宽带隙材料成为毫米波放大器的首选者。 氮化镓材料的禁带宽度为硅材料的3倍多,其器件在大功率、高温、高频、高速和光电子应用方面具有远比硅器件和砷化镓器件更为优良的特性,可制成蓝绿光、紫外光的发光器件和探测器件。近年来取得了很大进展,并开始进入市场。与制造技术非常成熟和制造成本相对较低的硅半导体材料相比, 第三代半导体材料目前面临的最主要挑战是发展适合氮化镓薄膜生长的低成本衬底材料和大尺寸的氮化镓体单晶生长工艺。 主要半导体材料的用途如下表所示。可以预见:以硅材料为主体、GaAs半导体材料及新一代宽禁带半导体材料共同发展将成为集成电路及半导体器件产业发展的主流。
半导体封装车间
|
上一篇:半导体封装工艺 下一篇:wire bonding 工艺 |
版权所有 © 北京思纳珂科技有限公司 半导体制造(IC、LED、DESCRET、SMART CARD等)封装耗材、备件解决方案 专业供应商
备案/许可证编号为:京ICP备14062060号 微小精密零件制作 24小时客服热线:18601279164
京ICP备2023003444号-1